LP Well-Posedness for Bilevel Vector Equilibrium and Optimization Problems with Equilibrium Constraints
نویسندگان
چکیده
منابع مشابه
Well-Posedness Under Relaxed Semicontinuity for Bilevel Equilibrium and Optimization Problems with Equilibrium Constraints
Bilevel equilibrium and optimization problems with equilibrium constraints are considered. We propose a relaxed level closedness and use it together with pseudocontinuity assumptions to establish sufficient conditions for well-posedness and unique well-posedness. These conditions are new even for problems in onedimensional spaces, but we try to prove them in general settings. For problems in to...
متن کاملDuality for vector equilibrium problems with constraints
In the paper, we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior. Then, their applications to optimality conditions for quasi-relative efficient solutions are obtained. Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...
متن کاملWell-posedness for Lexicographic Vector Equilibrium Problems
We consider lexicographic vector equilibrium problems in metric spaces. Sufficient conditions for a family of such problems to be (uniquely) well-posed at the reference point are established. As an application, we derive several results on well-posedness for a class of variational inequalities.
متن کاملLevitin-Polyak Well-Posedness for Equilibrium Problems with Functional Constraints
We generalize the notions of Levitin-Polyak well-posedness to an equilibrium problem with both abstract and functional constraints. We introduce several types of generalized Levitin-Polyak well-posedness. Some metric characterizations and sufficient conditions for these types of wellposedness are obtained. Some relations among these types of well-posedness are also established under some suitab...
متن کاملWell-posedness for Parametric Vector Equilibrium Problems with Applications
In this paper, we study the parametric well-posedness for vector equilibrium problems and propose a generalized well-posed concept for equilibrium problems with equilibrium constraints (EPEC in short) in topological vector spaces setting. We show that under suitable conditions, the well-posedness defined by approximating solution nets is equivalent to the upper semicontinuity of the solution ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2014
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2014/792984